

Introduction to Python
Style Requirements

Code can be complicated -- especially to the humans reading it. The Python community has
established coding standards as one of the keys to writing clear, readable code. Use of the
below coding standards in your solutions is required.

Style Standards

1. Variable names: all lowercase, with underscores between any words

Please do not use camelCase, but instead words or words_with_underscores.

2. Use 4-space indents, no tabs

Most of us will not have to worry about this because PyCharm inserts 4 spaces whenever
we use the [Tab] key. If you are using a different editor, you must configure it to do the
same. See me for details.

3. One space on either side of operators

var = aa + bb # note one space on either side of = and +

4. No space between function name and argument list (parentheses)

 string_length = len('hello') # not len ('hello')

5. Use single blank lines to separate single-spaced "paragraphs" ("steps") in your code.

Think of your code as an essay with "paragraphs", reading like a story:

current_year = 2021
u_name = input('please enter your name: ')
u_age = input('please enter your age: ')

ui_age = int(u_age)
uc_born = current_year - ui_age

print(f'Hi {u_name}, you were born in {uc_born}')

Each "paragraph" is a "step" your code takes. Like a paragraph, it clarifies that this part
of the code is a separate "thought".

Also, please do not use more than one blank line between "paragraphs".

Code Clarity

6. Use descriptive variable names

Variable names like xx, var1, number, etc. force the reader to remember what values
they represent, but if we use names like line_count, user_guess or fname, the reader
can more easily recall where they came from and what they are for.

(It is true that I use non-descriptive variable names in my examples, but this is done to
clarify the difference between my variables and Python's function and method names.)

7. Use f'' strings to combine values with strings.

The f'' string allows us to embed values (numbers or strings) into display strings. Please
do not use concatenation or commas to add spaces.

f'' strings are easier to write and read. Compare this busy print statement:

name = 'Holden'
age = 29

print('My name is ' + name + ' and my age is ' + str(age) + '.')

to this one:

name = 'Holden'
age = 29

print(f'My name is {name} and my age is {age}')

8. Comment your code only when needed (for clarity).

Python is very readable, which means that we don't usually need comments. But some
code statements are less clear and need a comment describing what they do.

However, you must not include unnecessary or obvious comments in your solutions.
They may be effectively used during the development process, but they should be
removed before submitting.

9. Remove test code and development code before submitting a solution.

During the development process you may create code statements (print statements,
experiments, earlier drafts, etc.) that your final program does not need. These must be
removed before submitting, otherwise they will clutter the code or make its purpose less
clear.

Code Organization

10. Place a "docstring" at the top of your code.

This should go right at the top of your program and can include any information you think
necessary -- usually starting with name, purpose, author and date:

"""
 solution_1.2.py -- calculate a tip based on user input

 Author: David Blaikie (dbb212@nyu.edu)
 Last Revised: 6/1/2021

"""

11. Avoid repetition (DRY principle)

Don't Repeat Yourself: if you find yourself issuing the same statement or group of
statements more than once, ask whether the repetition can be eliminated.

When you have finished your program, go over it once more to look for repetitions.

