
Python
Feature Summary: Regexes

RULES
• patterns can match anywhere in a string (unless anchored with ^ or $)
• patterns must match on consecutive characters
• quantifiers will match on as many characters as possible ("greedy" matching)
• matches are case sensitive (unless flagged insensitive)

• "raw" string (marked with r before the first quote) must be used for patterns

FUNCTIONS
• re.search() function: match a pattern to a string matchobj = re.search(r'\d', text)

returned "match" object reads as True in an if expression if matchobj:
if pattern matches. It can also be queried to retrieve print('matched')
grouped text

arguments: "raw" string pattern, text to search
return value: re "Match" object

• re.findall() function: return a list of all matches in a string strlist = re.findall(r'pat', text)
pattern matches as many times as possible until reaching
end of string . if pattern has no group, will return matched
text; if pattern has a group, will return grouped text;
if multiple groups, will return a list of tuples of grouped text

arguments: raw string pattern, text to search
return value: a list of strings of matched text, or list of tuples
 if there are multiple groupings in pattern

• re.sub() function: string replacement using a pattern rstr = re.sub(r'pat', rplce, text)
searches for pattern and replaces with supplied string

arguments: raw string pattern, replacement text,
 text to search
return value: a string with replacements made

• re.compile() function: precompile a pattern cpat = re.compile(r'pat')
lets re do preprocessing before evaluating the match for line in many_text_lines:
on a string -- used for matching on numerous strings matchobj = cpat.search(line)

arguments: raw string pattern, replacement text,
 text to search
return value: a string with replacements made

FLAGS
These are passed as additional arguments; they modify the behavior of the match. If multiple, flags are
needed, they should be separated by a vertical bar.
• re.I / re.IGNORECASE: case-insensitive match re.search(r'pat', text, re.I)

• re.M / re.MULTILINE: ^ and $ will match on start and end re.search(r'pat', text, re.M)
 of line in a "multi-line" string

• re.S / re.DOTALL: . (wildcard) matches on newlines re.search(r'pat', text, re.S)

ANCHORS
Anchors require that the match start at the first character or end at the last character.
• ^ match from start of string m = re.search(r'^pat', text)

• $ match to end of string m = re.search(r'pat$', text)
• \b match at end of word m = re.search(r'\bword\b', text)

this "zero width" matcher does not match on a character
but rather the boundary between a letter and a non-letter
(space, punctuation or the start or end of string)

"BUILT IN" CHARACTER CLASSES
A character class matches on one character in the string. If quantified, it may match on more than one.
• \d matches any numeric character 0-9 m = re.search(r'\d+', text)

• \s matches tab, space or newline m = re.search(r'\s+$', text)

• \w matches any letter, number or underscore m = re.findall(r'\w+', text)

• \D matches any character other than \d if re.search(r'\D', text):
• \S matches any character other than \s if re.search(r'\S', text):

• \W matches any character other than \w if re.search(r'\W', text):

• . (period): "wildcard" -- matches on any m = re.search(r'\w+.+\w+', text)
 character other than newline

CUSTOM CHARACTER CLASSES
A custom character class defines specific members of a class, and will match only on those characters.
A range (x-z) may be used. "Built in" character classes may be used inside custom character classes.
Characters may be listed individually, as a range (a-z) or as a built-in character class.
• [a-fxyz\s]: matches any character listed m = re.search(r'[a-z]+', text)

• [^a-fxyz\s]: matches any character other than m = re.search(r'[^a-z]+', text)
 those listed

QUANTIFIERS
A quantifier placed after any character, character class or grouped (parenthetical) pattern will match them on as
many characters as possible

+ one or more m = re.search(r'\d+', text)
* zero or more m = re.search(r'\d*\.\d{2}', text)

? zero or one m = re.search(r'\d?\.\d{2}', text)

• {0,3} (custom): between x and y m = re.search(r'\w{0,3}\d+', text)
to specify "or more" for max, omit the 2nd number

• ? "non-greedy" modifier m = re.search(r'\d+.+?\d+', text)
when placed after any quantifier, will match on
"as few as possible" instead of "as many as possible"

PARENTHETICAL GROUPINGS
Parentheses are used to group characters within a pattern. There are 3 possible purposes for groupings.
• grouping for alternates m = re.search(r'this (and|or) that')

grouping will match on one of the alternate patterns
separated by the vertical bar

• grouping for quantifying m = re.search(r'Rich (M.)?Nixon',text)
quantifier placed right after a grouping quantifies
the entire group

• grouping for text extraction tt = 'cost: 23.95'
matched characters within a grouping are retrievable m = re.search(r'cost: (\d+\.\d\d)', tt)
through the Match object val = m.group(1) # 23.95

re.Match METHODS
A Match object is returned from a successful match. The object can be queried to retrieve matched text or
learn about the match.
• .group() method: retrieve matched text from a grouping val = matchobj.group(1)

groups are numbered 1-n, counting each left parenthesis
arguments: integer index starting at 1 (0 is entire match)
return value: string of text that matched the pattern in the
 grouping

• .groups() method: retrieve matched text from all groupings values = matchobj.groups()
groups are ordered counting each left parenthesis
arguments: none
return value: list of strings, each the text matched in each
 grouping

