
Introduction to Python

Feature Summary, Session 3

FILES
• open() function: construct a file object fh = open('myfile.txt')

file object has methods for reading or writing the file fh = open('myfile.txt', 'w')
argument: string filename or file path, fh = open('myfile.txt', 'a')
 and optional "mode" argument ('r', 'w', 'a') str -> open file -> file object
return value: file object

• file .read() method: read a file as a single string text = fh.read()
the entire file text is returned in one string file read file -> str
argument: N/A (method works on file object itself)
return value: string

• file .readlines() method: read a file as a list of strings lines = fh.readlines()
the entire file text is divided into lines (by newline) file read file -> list of strings
and returned as a list of strings, each string a line
argument: N/A (method works on file object itself)
return value: list of strings

• for looping on a file object: iterate over each string line in a file for myline in fh:
as Python iterates over each line in the file, it assigns the line to the print(myline)
loop variable (at right, myline) as a string, then executes the block. for str in file:
The assignment and block execution happen once for each line in the file print str
argument: N/A (iterates over file object itself)
return value: with each iteration, a string line from the file assigned to loop variable

STRINGS
• string .split() method: divide a string into a list of strings line = 'this:that:other'

divides a string into a list of strings by splitting on the items = line.split(':')
delimiter argument # ['this', 'that', 'other']
argument: string delimiter (None or no delimiter to str -> str split -> list of strs
 split on whitespace) aline = 'this that other'
return value: a list of strings from the string divided items = line.split() #=or=
 on the delimiter (with delimiter removed) str split -> list of strs
 items = line.split(None)
 # ['this', 'that', 'other']
 None -> str split -> list of strs

• .join() method: join a list of strings into a string items = ['a', 'hi', 'd']
method is called on a string delimiter and returns a string line = ':'.join(items)
consisting of the items in the list, joined with the delimiter print(line) # 'a:hi:d'
argument: a list of strings list of strs -> str join -> str
return value: string

• slice a string: slice a string by index (character position) mystr = '20180917'
extract a portion of a string by index position month = mystr[4:6] # 09
subscript: the integer position of the start and end of str slice -> str
 string (end index is non-inclusive)
return value: string

• .rstrip() method: remove "whitespace" characters li = 'line. \n'
from right side of string sli = li.rstrip() #'line.'
returns a string with all spaces, tabs and/or newlines str strip newline from end -> str
removed from the original string
argument: N/A (method works on string object itself)
return value: string

• .splitlines() method: split a "multiline" string on newline text = 'line1\nline2\nline3'
split a string containing newlines into a list of string sp = text.splitlines()
lines, with the newlines removed # ['line1','line2','line3']
argument: N/A (method works on string object itself) str split into lines -> list of strs
return value: list of strings

LISTS
• subscript: select an item from a list items = ['th', 'tha','oth']

index: int position of item counting from 0 second = items[1] #'tha'
return value: whatever object is referenced in the list of strings subscript -> str
 selected item of the list

• len() function: return integer length of a list items = ['th', 'tha', 'oth']
argument: list print(len(items)) # 3
return value: integer list -> get length -> int

COMMAND LINE ARGUMENTS
• sys.argv list of strings: access command line arguments import sys

This list of strings "springs into being" at program args = sys.argv
start. It contains the program name in the first print(args)
item, and any text args entered at the command line when # ['prog.py', 'arg1']
the program was executed. read commandline args->list of strs

