
Introduction to Python
Homework Requirements

Please note: 20% of your grade will reflect your adherence to these instructions, which include
notations, style and the Five Requirements, detailed below.

Five Requirements

1. Follow instructions carefully: please re-read assignment just before submitting to avoid
missing any specific project requests.

2. Make sure you’ve completed the checklist: please review assignment checklist just
before submitting. Ensure that you have successfully performed all tests as noted.

3. Notations must be made in the right margin with type, value only! No additional

explanations, please. See Type/Value Notations, below.
o input(): please put a sample value, and have succeeding values reflect this value
o if, elif, while: please notate as bool and give the value that would occur if the

program were run (Session 2 onwards)
o for: please notate the type and value of the first value of the control variable

(Session 3 onwards)
o print(), else, try/except: these should not be notated

Careless notation of type or value will impact your grade -- see Grading, below.

4. Use proper style: please follow all recommendations in the Style Requirements
document (this is required starting with Session 2 homework).

Careless application of style will impact your grade -- see Grading, below.

5. Make sure your program runs, or let the instructor know: you must inform instructor (in

a comment) if your program does not run properly or without correct output! Make
sure to run your program and all tests after making any changes, as any edits could
easily break your code or change its output.

Code that does not run or does not pass tests will impact your grade -- see Grading,
below.

[more below]

Type / Value notations

1. All statements that result in a value should be notated with type, value only. However,

please do not notate print(), else, statements. Please place your notations apart from
the code aligned with a straight left edge.

(Also note that italic notes should not be included.)

word1 = 'hello' # str, 'hello'
word2 = ' world!' # str, ' world'

sentence = word1 + word2 # str, 'hello world!'

zz = len(sentence) # int, 12

print(zz) # (no need to notate print() statements)

2. For dynamic values that are determined at runtime (like input()), use a ‘sample’ value that

you can imagine the user typing when the program is run.

a = 5.5 # float, 5.5

b = input('enter a num: ') # str, '10' (for input(), notate a ‘sample’ value)

c = int(b) # int, 10 (this value is based on the sample value above)

d = a + c # float, 15.5

3. For conditionals (if/elif/else), notate as bool with the result you expect based on current

values (as below, the num entered is -5, so the first if test is False and the second True).

a = input('enter num: ') # str, -5 (notate ’sample’ value)

if int(a) > 0: # bool, False (notate result of ‘if’ test)
 print('greater')

elif int(a) < 0: # bool, True (notate result of ‘elif’ test)
 print('lesser')

4. For looping blocks (while and for), some variables may be assigned many times and have

many values. Please notate just the first value each variable will hold.

notating ‘while’ loops

a = 0 # int, 0

while a < 5: # bool, True (notate first value encountered)

 a = a + 1 # int, 1 (notate first value encountered in a loop)

notating ‘for’ loops with files

fh = open('revenue.csv') # 'file' object

mysum = 0 # int, 0

for line in mylist: # str, "Haddad's,PA,239.50\n" (notate first line)

 mysum = mysum + int(item) # int, 1 (notate first value encountered)

Due dates and resubmits

1. Project solutions are due the night before class, anytime. Late submissions can only be
accepted if you have contacted the instructor beforehand.

2. If a project solution is correct, it will be marked with a 'c' (for example, 2.1c)

3. If a project solution is incomplete, it will marked [INCOMPLETE]. You may then resubmit

the solution to score a completion. (Extra credit incompletes are not marked at all.)

4. You will have only two resubmits to complete your solution, except as determined by the
instructor. After two resubmits if the solution has not been corrected, it will be marked
incomplete permanently.

5. If a project solution is marked incomplete, it must be completed within two weeks of the
initial due date. After that time the solution will be marked incomplete permanently, so
don't wait to resubmit!

6. As noted in Five Requirements, above, reduction of your solutiuon grade will result if you

are careless in completing any of the above -- see Grading, below.

Grading

Assignments are graded on a pass/fail basis. If something needs to be changed or improved I
will return your solution with notes, and you may resubmit the solution with corrections for full
credit. However, if any of the above Five Requirements are not met, or if a request or checklist
item in the homework assignment is not met, I will return the solution and deduct a penalty of 5
percentage points from the solution's potential score.

Again, you can resubmit for full credit (minus the penalty), but if there are still issues or
corrections to be made, I will return the solution again and deduct 3 percentage points from the
solution if it appears that you are not taking proper care to do everything correctly.

In many cases I will not point out the specific item that’s missing, but simply say “review the
checklist” or “make sure your notations are complete and correct” and you’ll need to go back
through the assignment to discover what’s missing.

But I do want to emphasize that just because I return a solution that does not mean I’m taking off
points. Sometimes I return a solution because I want to make sure you’re doing things correctly
or if you make a common mistake that we haven’t discussed. The point penalties are only
applied for carelessness! If you’re very sincere in your efforts, you won’t be penalized at all.

Note that as this is a new policy, there may be some “bumps” in the road or issues to resolve, so
please understand that I will be extremely lenient in my meting out of penalties. I simply want
to ensure that you will read the assignment twice and fulfill all of the homework
requirements.

For you: tips on working on a solution

Below are some suggestions for proceeding to work on a solution -- these are not requirements.

1. Review the week's features we explored in the inclass exercises. You can also see the
week's features in pythonreference.com – look for the 'Session' links on the left menu.

2. Do as many of the inclass exercises as you can. The problems and solutions there will
demonstrate how to do the projects. They also demonstrate proper usage and style. If
you can find the time to do all of them, by the time you start the homework you’ll have a
very good idea of what you need to do to solve it.

3. Plan your solution: consider the assignment and try to imagine how you might apply

some of the week's features to the problem.

a. Try to develop a mental picture of the data you're working with (for example,
strings that come from input(), or lines of a CSV file) and how that data needs to
be processed to get to the result.

b. Consider what we discussed in class and in the exercises, and think about how
some techniques might apply to the problem.

c. Try to break down the problem into steps (first we have to do this, next we need to
do this, etc.)

d. You will eventually be able to develop a 'story' of how the input data is transformed

into the output you need. This may not come right away, but we’ll work towards it.

e. You may begin coding the initial steps before you know the overall 'story', but you
should always notate the object type and value as you work (see below) --
otherwise, you may lose touch with what the program is doing.

4. Writing your code:

a. Write one to three statements in your code.

b. Determine the result of each of these statements in one of the following ways:

http://pythonreference.com/

i. run the program and print the values (and type if needed) of the variables
that have been created or changed by the newly added statements

ii. review the feature in pythonreference.com to verify the type of any
statement

c. In the right margin of your code, notate the type and value result of each

statement.

Above all, you must not use code that you don't understand. Understanding means
knowing the object type and value that results from each statement. Without it, you are
guessing. Guessing can be a huge waste of your time!

5. If unsure how to proceed with a plan, story or steps, please read the Project Dicusssion

document for a longer discussion, hints and some code examples or outline. Also please
remember that the inclass exercises usually relate directly to what you are doing, so there
are a lot of clues there that point toward what your project solution will be.

6. Resist the temptation to guess. It’s hard, I know. I’ve heard from many students that it is
a challenge to keep from “just trying something” to “see what will result if I change this”.
But, this won’t be helpful to your learning unless you understand what the code is doing.
The correct way to work is to ask what is needed, and then to look for the feature that
meets that need, rather than using a feature and seeing if the result “looks right”. This
isn’t understanding -- it’s guessing! (I should add that a little guessing is ok, but once you
see the result you must test it for type and value so you can see exactly what was the
result!)

