Introduction to Python

Debugging Programs in PyCharm

The PyCharm debugger is an essential tool for observing execution of our programs and
"inspecting" the values of our variables. With the debugger we can pause execution at any
point, "step through" our code statement-by-statement, and see the value and type of any
variable in our code.

The intended purpose of the debugger for this course is to help you determine the type and
value of every variable in your code as it executes. As you know, you are required to note
this information in your code solutions, so the debugger can be used to complete this
requirement.

1.

Basic Debugging

a.

In the session 00 folder, double-click hello _vars.py in the project window. PyCharm

loads the code for this file in the main window.

Set a breakpoint. To the left of the code line b = 10, between the line number 4 and the
code, there is a blank “alley” running from top to bottom. Click in this space at that line.
A large red spot appears - this is called a breakpoint. When we debug the program,
Python will stop at this point.

Run the debugger. Right click in the code window and just below the Run selection,
select Debug hello_vars.py. In the code window, PyCharm highlights the code line with
the breakpoint (the red circle). At the bottom, PyCharm opens a Debugger window with
several new display values and controls.

Note how the code window has changed. The debugger is actually in the process of
executing the code, but it has paused.

i. The program ran to the breakpoint and paused there.

ii. The highlight at the breakpoint shows that the debugger is ready to execute the
highlighted line in the code.

iii. Above the highlighted line, PyCharm shows us the value of a, which is 5. If this
value were to change later in the code, the display would change accordingly.

e. Examine the Debugger window. Note the following elements of the debugger window:

i. The run controls. On the far left column of the debugger window, note the following
control buttons:

1) circular green arrow ("Rerun")
2) green triangle ("Resume program")
3) red square ("Stop")

These (and the “step” control button) are used to control the debugger.

Vi.

Vii.

. The Debugger tab. The Debugger tab is currently selected. This window allows us

to inspect our variables.

1) Frames and MainThread are not needed for our purposes.

2) Variables shows the type and value of each variable encountered by the
debugger. Note the one variable a is identified as an int (this means integer)
with value 5.

The "step" control buttons. These are used to control execution of the program. You
can see the name of each control by hovering your mouse cursor over each button.

The only step control button we need to consider is Step into my code (the 4t from
the left, pictured as an arrow with three very short lines).

Click "step into my code". Note three things:

1) The highlight has advanced to the next code line.

2) The value of b has appeared next to the previous code line.

3) The value and type of b have been added to the Variables window below. b is
also an int, with value 10.

Click "step into my code" again. Note that ¢ has been added to Variables and its
value shown in the code window.

Click the green "Resume program" button. The code executes to the end and the
variable values disappear.

Click the "Console" tab. This tab shows the output of your program in the same way
the Run window does. At any point in the debugging process you can check the
output of your program as it is running or once it is done running.

. Using the debugger with the input() function. Since input() requires that we use the Run

window, it can be confusing to use it when we also need to attend to the Debug window as

well.

Before running the below instructions, please make sure you understand how to use the
debugger by following the instructions in the above section.

a. Inthe Session 2 folder, find and open the file debug_demo.py in PyCharm. The script
should look like this (if you can’t find it, copy and paste the below into a new program):

a
b

ui

iui

5.05
'hello’

= input('please enter a value: ')

= int(ui)

print(f'the value doubled is {iui * 2}')

b. Set a breakpoint at the second line (b ="hello"). Keep in mind that the debugger does
not stop at breakpoints at the first line. This seems to be a bug that may be corrected in
future versions of PyCharm.

c. Run the script in the debugger. The debugger launches, runs the program up to the
breakpoint, and displays the value of a in the variable inspector window.

d. Click Step into My Code once. This step executes the b ='hello' line. Note the addition
of this variable in the variable inspector window. We are now about to execute the
input() line.

e. Click Step into My Code again. This step executes the input() line and causes the
debug window to go dark. The reason for this is that input is required — see next.

f. Click the Console tab next to the Debugger tab in the debug window. Here you see the
input() message and a >? prompt.

g. Atthe >? prompt, type some numbers, then hit [Enter]. The window displays a >>>
console prompt.

h. Click back to the Debugger tab next to the Console tab. Note that the variable ui now
has the value that you entered and displays it and its type.

i. Continue stepping through the code as needed. The debugger will now behave as
previously. Any encounter with input() will require that you click back to the Console to
enter the input value.

. Using the debugger when running from the command line with sys.argv (Session 9). Since
sys.argv accepts values from the command line, it is not compatible with the debugger.
Although you could enter sys.argv values through a PyCharm menu, | recommend instead
the following workaround:

import sys

sys.argv = ['myscript.py', '1927', 'lowest']

The above line sets the program name (you can substitute yours) and two command-line
arguments, emulating what you would see in sys.argv if you ran the script with the
arguments 1927 lowest. Once you have finished using the debugger and wish to go back to
the command line, make sure to comment out the last line above.

